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A concept of mean last passage time at the saddle point is proposed in order to compute
both the lifetime and the escape rate of a particle in a metastable potential, where the
backstreaming across the saddle point is taken into account. It is shown that the mean
oscillating time around the saddle point is the longest one among all the time scales at
high temperatures and the inverse of the mean last passage time at the saddle point is
more close to the steady escape rate.

KEY WORDS: Mean last passage time, saddle oscillation, backstreaming, escape rate.

1. INTRODUCTION

How long does it take a randomly varying quantity to reach a given position
firstly? How large is the rate for escaping the saddle point of a metastable well?
The two questions are universal in the studies of unstable systems.(1,2) Usually,
the steady escape rate of a particle in a metastable potential is approximated
by the inverse of mean first passage time (MFPT) at an exit point.(3) The latter
can be analytically derived without the steepest descent approximation in the
overdamped case, only an absorbent boundary (exit point) is required to choose
sufficiently far beyond the saddle point. The rate process is a phenomenon that
takes place on a long time scale when compared to all the dynamic time scales
characterizing the local stability.(2) It is both of principle and practical interest
to know at which time scale the influence of noise becomes important, and also
to clear what time scale is the longest one when the intensity of noise varies.
For the existence of structures either in the power spectrum of noise(4,5) or in the
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potential,(6,7) the MFPT at the saddle point may consequently be less by several
orders of magnitude than the reciprocal escape probability, for instance, a colored
noise-driven particle can pass the saddle point of bistable potential several times,
back and forth. This implies that the MFPT is not enough to investigate the
surviving behavior of some complex unstable systems.(8,9) Thus a new time scale
needs to be introduced, which is the mean last passage time (MLPT) at the saddle
point. It describes the mean time required of a particle completely leaving the
saddle point, if the particle starts from the metastable potential minimum. This is
indeed the occupying life of the particle within the well. The difference between
the MLPT and the MFPT is actually the mean oscillating time of the particle
passing over the saddle point multi times. Furthermore, if the initial position of
the particle is outside of the saddle point, the particle driven by fluctuation can
enter the well of metastable potential. This is called noise-enhanced stability.(10)

The oscillating time around the saddle point can be also applied to study such
phenomenon.

We would like to point out that the difference between the escape rate defined
at the saddle point by using test particles passing over the saddle point first time
(i.e., the saddle point is chosen to be an absorbent boundary) and that defined at an
exit point is regarded as a saddle-point backstreaming. If we take into account this
quantity in the studies of escape dynamics, namely, test particles multiply pass over
the saddle point back and forth as proposed in the present work, the steady escape
rate can always be determined at the saddle point. The backstreaming should be
used as a probe for investigating the characteristic behavior of unstable systems
at the saddle point. Moreover, a potential application of the MLPT is help one to
sort out some of problems with channel diffusion between constant concentration
reservoirs in biological channels.(11,12)

In this paper, we propose a concept for the mean last passage time at the
saddle point in order to investigate both the lifetime and the escape rate of a
metastable system. The dependence of distributions of first passage time and last
passage time on the initial condition is discussed. Time-dependent escape rate is
numerically calculated at the saddle point rather than other exit points.

2. LAST PASSAGE TIME DISTRIBUTION

The equation for overdamped motion of a particle is written as

γ q̇(t) = −∂V (q)

∂q
+

√
2γ T ξ (t) (1)

with 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′), where γ is the friction coefficient,
V (q) is the potential, and T is the temperature.
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Let us distinguish several time scales appearing in the MFPT at an exit point
qex starting from the potential minimum q0, i.e.,

τMFPT(q0 → qex) = τMFPT(q0 → qb) + �τb + τ ∗
b→ex

= τMLPT(q0 → qb) + τ ∗
b→ex (2)

where τMLPT(q0 → qb) is the mean last passage time at the saddle point qb, τ ∗
b→ex

denotes the mean saddle-to-exit descent time after the particle passes over the
saddle point at the last time, and �τb is called the mean oscillating time around
the saddle point. The latter is the difference between the mean leaving time and
mean arriving time of the particle at the saddle point and defined by

�τb = τMLPT(q0 → qb) − τMFPT(q0 → qb) (3)

For simplicity, the metastable potential V (q) is chosen in such a way that
consists of two smoothly joined harmonic oscillators adding with a post-saddle
anharmonic potential as

V (q) =




1
2ω2

0q2, q ≤ qs ;

Vb − 1
2ω2

b(q − qb)2, qs ≤ q ≤ qb;

Vb − 1
2ω2

b(q − qb)2 + c3(q − qb)3 + c4(q − qb)4, q ≥ qb

where c4 ≤ 0. We apply the stochastic Runge-Kutta algorithm to solve numerically
Eq. (1) with 1.5 × 106 test particles and use dimensionless data to plot forthcoming
each figure.

The distributions of the first passage time and the last passage time across the
saddle point are of interest(8) and are plotted in Figs. 1(a) and 1(b) by using the two
distributions of initial position via Langevin simulations. In those figures, τMFPT =
76.7, τMLPT = 169.3, and �τb = 92.65 for a δ distribution (δ-D) W (q0) = δ(q0);
τMFPT = 73.1, τMLPT = 165.7, and �τb = 92.56 for a Gaussian distribution (G-D)
W (q0) = (2πσ 2)−1/2 exp[−q2

0/(2σ 2)] with the width σ = 0.8. It is seen that the
distributions of both the first passage time and the last passage time depend on
the initial condition, however, the dependence of the oscillating time (i.e., the
difference between the two times of leaving and arriving at the saddle point)
around the saddle point on the initial position is weakly. Indeed, the distribution of
the first passage time starts from a maximum value and that of the last passage time
does not. If the initial position of particle obeys a Gaussian distribution, namely,
the particle with a probability locates at the potential top, the time needed arriving
firstly at the saddle point is short. However, the particle requires still time to leave
lastly the barrier, because it could pass over the saddle point multi times.
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Fig. 1. (a) The distributions of the first passage time (FPT) and last passage time (LPT). (b) The
distribution of the oscillating time (τLPT − τFPT) around the saddle point. The parameters used are
γ = 10.0, ω0 = ωb = 1.0, c3 = c4 = 0.0, T = Vb = 1.0, qb = 2.0, and σ = 0.8.

3. ESCAPE RATE CONNECTED WITH MLPT

In contrast to the MFPT and MLPT, the question of how to calculate the
escape rate is slightly less trivial. Who do two time scales of the MFPT and MLPT
contain all the relevant information that one can possibly extract from numerical
simulation? To this end, we determine numerically time-dependent escape rate by

r (t) = − 1

N (t)

�N (t)

�t
(4)

where N (t) denotes the number of test particles that have not undergone escape
at time t , �N (t) is the number of test particles that have undergone escape from



Last Passage Time Statistics for Barrier-Crossing Processes 865

Fig. 2. Time-dependent escape rate at T = 1.0 for different postsaddle anhanmonic potentials and
numerical results for the inverses of MFPT and MLPT at the saddle point are also plotted. The
parameters used are γ = 5.0, Vb = 1.0, ω0 = ωb = 1.0, and the exit position qex = 10.0. (a) c3 = −3
and c4 = 0, the potential is steep; (b) c3 = 0.23 and c4 = −0.04, the potential is gentle.

the barrier during a time interval t → t + �t . Here we would like to point out a
fact that �N (t) is the recorded number of test particles crossing over the saddle
point for the last time after the test particles perform passing back and forth over
the saddle point multi times. This treatment differs from the previous method in
which only those particles passing over the saddle point for the first time are taken
into account.

Figures 2(a) and 2(b) show time-dependent escape rate calculated by test
particles starting from the metastable potential minimum with a δ(q0) distribution
and for different post-saddle potentials. It is seen that the stationary escape rate
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r (multi)
b determined at the saddle point by means of test particles passing over

the saddle point multi times approaches the calculated result rex by means of test
particles finally arriving at an exit, because in each of these cases a positive average
current is built up in the stationary state. The backstreaming (r (frist)

b − rex) is quite

large when the post-saddle potential is gentle, where r (first)
b is the steady escape rate

calculated by test particles passing over the saddle point first time. This is clear
as it should be because in the mean first passage process the test particles cannot
recross back over the boundary if the saddle point is chosen to be an absorbing
boundary.(2)

A simple relation between MFPT, MLPT and the Kramers escape rate was
proposed by Reimann et al.(17) and modified by Boilley et al.(18) The escape rate
is as the ratio of the probability flux j over the saddle point and the population of
a well (i.e., q ≤ qb) in the quasi-stationary state. An equality for the population
reads ∫ qb

−∞
W (q)dq =

∫
G

W (q)dq −
∫ qex

qb

W (q)dq (5)

where the domain G is determined as the fact that particles are removed from
the ensemble as soon as they leave the domain G for the first time. The Kramers
escape rate is then defined as the constant net flux out of G normalized by the
population inside barrier,

rk := j/

∫ qb

−∞
W (q)dq (6)

The steady state populations at other regions are
∫

G W (q)dq = jτMFPT(q0 → qex)
and

∫ qex

qb
W (q)dq = jτb→ex, respectively. This finally yields

τMFPT(q0 → qex) = r−1
k + τb→ex (7)

where τb→ex is the mean saddle-to-exit diffusive time, which differs from τ ∗
b→ex de-

termined in Eq. (2), because τb→ex still includes some times oscillating around the
saddle point. Here, τMFPT(q0 → qex) − τb→ex can be regarded as an approximate
expression of the mean last passage time at the saddle point. In order to calculate
the escape rate, we propose to use the MLPT at the saddle point instead of the
MFPT at the exit point. It is found in Figs. 2(a) and 2(b) that a relation of theirin-
verses and the Kramers rate is given by rk�τ−1

MLPT(q0 → qb) > τ−1
MFPT(q0 → qex).

The MFPT has an exact expression for arbitrary barrier height in the over-
damped case,(2,7,14) and the mean saddle-to-exit diffusive time τb→ex can be ob-
tained analytically from the particle with an average velocity of the Kramers’
distribution at the saddle point travelling from the saddle point to the exit point
in an inverted harmonic potential [c3 = c4 = 0 in V (q)] for moderate-to-large
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Fig. 3. Various time scales in the unit of γ −1 vs exit positions. The parameters used are T/Vb = 0.5,
c3 = c4 = 0, ωb/ω0 = 1

3 , 1
2 , and 1.0 from top to bottom in each group lines.

damping.(20–22) They can be expressed, respectively, as

τMFPT(q0 → qex) = γ

T

∫ qex

q0

dy exp

[
V (y)

T

] ∫ y

−∞
dz exp

[
− V (z)

T

]
(8)

and

τb→ex = 2

ωb

[√
1 + η2 + η

]
R(

√
�V/T ) (9)

where �V denotes the potential difference between the saddle point and the exit
point, and η = γ /(2ωb). The expression (9) reduces to 2γ /ω2

b R(
√

�V/T ) in the
overdamped case.(22) The function R is R(q) = ∫ q

0 dy exp(y2)
∫ ∞

y dz exp(−z2).
In Fig. 3, we plot the theoretical results for various time scales of the particle

in the metastable potential by using Eqs. (8) and (9). It is seen that both the mean
saddle-to-exit diffusive time and the Kramers time r−1

k increase as the post-saddle
potential becomes gentle. In this case the barrier backstreaming should be large
and thus the dynamical effect between the saddle point and the exit point cannot
be neglected.

Figure 4 shows numerical results for the three typical time scales, such as the
mean first passage time τMFPT(q0 → qb), the mean saddle-point oscillating time
�τb, and the mean saddle-to-exit descent time τ ∗

b→ex. It is clearly seen that �τb is
the longest time scale. At low temperatures, the time spent inside the well is very
large, the particle has only a small positive velocity when it arrives at the saddle
point and then descents to the exit point, so that the MFPT at the saddle point
and the mean saddle-point oscillating time around the saddle point are equivalent.
Nevertheless, with the increase of temperature, the difference between these two
time scales is observably. This is due to that the Kramers time decreases and the
oscillation of particle around the saddle point becomes strongly.
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Fig. 4. Dependence of three time scales on the temperature. The parameters used are γ = 10.0,
Vb = 1.0, ω0 = ωb = 1.0, qex = 6.0, c3 = 0, c4 = 0, and qb = 2.0.

4. SUMMARY

We have proposed the mean last passage time at the saddle point and dis-
cussed the dependence of several time scales in the metastable potential on the
temperature. The distributions of the first passage time (arriving at the saddle point)
and the last passage time (leaving the saddle point) depend on the initial condition,
but the dependence of the mean saddle-point oscillating time on the initial condi-
tion is weakly. We have also performed Langevin simulation for time-dependent
escape rate by considering test particles passing back and forth over the saddle
point and evaluated the mean last passage time at the saddle point, where the back-
streaming across the saddle point has to be taken into account. If the temperature
is close to the barrier height, the Kramers time (the inverse of the Kramers rate)
required for a particle stating from the metastable potential minimum arriving
at the potential top is shorter than the mean oscillating time of particle across
over the saddle point. Therefore, the dynamics of unstable system is dominated by
the mean last passage time scale for the escape out of the barrier of a metastable
potential. It should believe that the concept of the mean last passage time proposed
in this work has a very practical application for various problems.
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